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ABSTRACT 

Let ~ and ~b be two hyperfunctions on the circle which have disjoint 

suppor t .  We interpret in terms of Fourier coefficients the fact tha t  their 

product,  defined in the sense of sheaf theory, vanishes. 

1. I n t r o d u c t i o n  

Let HF(T) be the set of all hyperfunctions on the unit circle ~'. These objects 

can be interpreted as linear functionals on the space O('l~) of germs of analytic 

functions on ~ [3, Chap. 1], or as analytic functions on C \ T vanishing at infinity 

(see section 2), and are natural generalizations of Schwartz distributions on ~'. Of 

course, it is not possible in general to define the product of two hyperfunctions, 

but this product makes sense for ~ e HF('tF), r E HF(T) if it is possible to com- 

pute in some sense the convolution ~ * r  and if the sequence ((~*r is the 

sequence of Fourier coefficients of some hyperfunction, which will be called the 

product of ~ and r This is the case, for example, if ~ is the hyperfunction asso- 

ciated to some function analytic on a neighborhood of the unit circle. We point 

out in this paper a natural result (corollary 2.7): if ~ and r are hyperfunctions 

on T with disjoint support then 

lim E r lpl~(P)~b(n - p)  = O. 
r - + l -  

nEZ 

If, further, limlpl_,+~ ~ ( p ) r  - p)  = O, then 

lim E ~ ( p ) r  = 0. 
m ~ + ~  

Ipl<m 
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This result was suggested to the first author by an elegant argument based on 
the Poisson summation formula and the Paley-Wiener theorem, at the end of 

a recent paper by Domar [7] where nontrivial invariant subspaces of g2(Z) are 

constructed for weights w such that w(n)w(-n) = 1, (n E Z) but for which 
o o  I log (n)t 

n2 -- +c<), 
n = l  

provided that )--]nezllogw(n + 1) + logw(n - 1) - 21ogw(n)] < +oc. 

Atzmon [2] noticed that Domar's argument shows in fact that if r r E HF(T), if 

~pez  I~(P)]I~( n -P)] < -)-oc(n E Z) and if Supp 4) and Supp~b lie in disjoint arcs 

of the unit circle, then r162 = 0, and used this fact and the Beurling-Malliavin 

theorem [4] to replace the condition w(n)w(-n) -- 1 by the condition 

-~ l l~ < + ~  
n 2 

in Domar's theorem (see also [1], [8], [9], [10] and [Ul for other recent results 

about  translation invariant subspaces of g2(Z)). Our original proof of Corollary 

2.7 was based on standard results about entire functions of exponential type and 

their Borel and G-transforms [5], but something looked unnatural, and the au- 

thors had the feeling that it was possible to see directly that the product ~. r  

vanishes in some trivial sense if Supp ~o M Supp r = 0, and then draw conclusions 
about  Fourier coefficients. We found the explanation in the prehistory of mi- 
croloeal calculus [6]. Hyperfunetions on the circle form a sheaf, and it is possible 

to define "locally" the product of a hyperfunction and an analytic function. Now 

let ~o, r 6 HF(T) and assume that the regular points of ~p+, ~+, ~ - ,  r  satisfy 

Reg(~o +) U Reg(~b-) = ~i',Reg(r +) U Reg(qo-) = ~7. Then the product ~. r  can 

be defined locally everywhere, hence globally since hyperfunetions on the circle 

form a sheaf (Definition 2.1). Now if ~o and r are multipliable in this sense, and 

if we define ~o~ and r for ~ E D* = D \ { 0 }  by the formulae ~ ( n )  = AInl~(n), 

r = ~l-Ir then, if h E O(T), the map (~/,#) , ~ (~o~.r has an ana- 

lytic extension to (]I)* U ~) x (D* U ~) where i-I is some domain in C containing 

the complex number 1 (see Remark 2.6). It easily follows from this observation 

that 

~o.'~(n) = lira Z rlPI~(P)~)(n - p)" 
r--41- pEZ 

Also it follows from the Fatou-Riesz theorem that 

~o.'~(n) = lim Z ~(p)r - p) 
rn--~+c~ 

IpI<m 
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if limp_,+~ ~(p)~z(n - p) + ~(-p)~b(n + p) = 0. The authors believe that  this 

approach gives the heuristics of the phenomenon pointed out by Domar in [7]. 

Also, our proofs are based on the use of concrete contour integrals (see Lemma 

2.3 and formula (2.27)) which gives some hope to obtain results analogous to 

Corollary 2.9 with weaker notions of support. 

The authors wish to thank A. Atzmon for fruitful exchange of information. 

We also wish to thank N. Nikolski for suggesting that  we consider 

limr-~l- ~peZ rlpl~(P)~( n -P)  to give a sense to the convolution product 7 "  r 

and T. Ransford for suggesting that we use the Fatou-Riesz theorem. 

2. Multipliable hyperfunctions on the circle 

We will denote by 7/(W) the space of holomorphic functions on an open subset 

W of C. We will say that  an open subset W of C is admiss ib le  if W A ~ r 0. 

If W is admissible, we set W + = W M ]I), W -  = W M (C \ ~). 

Let L be a nonempty open subset of T, and denote by //L the set of all 

admissible open subsets W of C such that W M 3" = L. For W E //L denote 

by HFw(L) the quotient space 7/(W \ L)/7/(W). If W1 C W2, the classical 

excision theorem shows that  the map f + 7/(W2) ~-+ flw, "-L + 7/(W1) is an 

isomorphism from HFw2(L) onto HFw1 (L). Hence we can consider that  the 

space HF(L) := HFw(L) does not depend on the choice of W E/XL. 

If W E //L, and if f �9 7/(W+), g �9 7 / (W-)  are given, we will denote by 

(f,g) �9 HF(L) thecoset  F + 7 / ( W )  whereFiw+ = f, FIW- = g. If L1 C L, 

then W1 = L1 U (W \ L) �9  In this case we will define the restriction map 

HF(L) ,  ) HF(L1) by the formula 

(2.1) (f,g)lL~=(flw+,giw~-) (W E/ /L , f  E7/(W+),gc=7/(W-)). 

Equipped with the restriction maps, the family I-IFv = {HF(L)} forms as well- 

known a sheaf. Notice also that  it immediately follows from the excision theorem 

that  the sheaf HFv is a flabby sheaf, which means that HF(~)IL = HF(L) for 

every nonempty open subset of li'. Details about these standard facts can be 

found in [6, Chap. 1]. 

Set H o ( C \ ~ )  -= {g �9 7/(C\D)lliml~l_~+oQg(z ) = 0}. Given qo �9 HF(V), 

there exists a unique ~+ �9 7/(II)) and a unique ~ -  E 7 / o ( C \  D) such that  ~ = 

(qo +, ~ - ) .  This trivial special case of the excision theorem follows immediately 

from the fact that holomorphic functions in an annulus admit a Laurent series 

expansion. We define the Fourier coefficients of ~ �9 HF(~) by the formulae 
o o  

(2.2) V+()~) ---- ~ ~(n) ~'~ (1~,1 < l) 
n ~ 0  
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and 

(2.3) V-(A) = - E ~ ( n ) A  n (IAI > 1). 
n<0  

Let L be an open subset of ll', and denote by CO(L) the set of real analytic functions 

on L, i.e. the set UweuL ~/(W)IL" For h �9 CO(L), denote by Yh the set of open 
subsets W �9 ~'~L such that h extends holomorphically to W. Let h �9 C0(L) and 

let W �9 Ph. Set 

(2.4) h.(f ,g) = (hf, hg) ( f  �9 7-t(W+), g �9 7-l(W-)). 

Formula (2.4) defines the product h4o for h 6 0 ( L ) ,  ~o 6 HF(L). 

Now let h 6 0 ( T ) ,  and let ~o = (~+,~o-) 6 HF(T). Denote by h(n) the nth 

Fourier coefficient of h. Then h 6 7-/(Wr) for some r e (0, 1) where 7-/(W~) = 

{z �9 C] r < I z] < r - l } ,  and we have 

(2.5) 

and so 

(2.6) h.-~(n) = Eh(P)~(n  - p )  (n 6 Z). 
p6Z 

Notice that  the series above is absolutely convergent. 

Consider again h E O(L), W E ])h. Define h e HE(L) by the formula 

(2.7) = (hiw§ 0) = (0, - h i w - ) .  

If h 6 CO('IF), an immediate verification shows that the hyperfunction h and the 

function h C O(I') C LI(T) have the same Fourier coefficients. 

In the sequel we will often identify a function h G O(L) with the hyperfunction 

6 HF(L). Notice that if h C 7-/(Wr) C 0 (~)  for some r 6 (0, 1), then h = 

(h+,h - )  whereas h(z) = h+(z) - h- (z )  for z C Wr. Hence the hyperfunction 

associated to h represents the "jump" between h + and h -  on the circle. Similarly, 

if W E L/L, f C 7-/(W+), g E ~ / (W-)  then the hyperfunction (f ,g) can be 

interpreted heuristically as the "jump" between f and g on L. 

With the above notations denote by Reg(f)  the set of elements ~ of L which are 

regular for f ;  this means that there exists r > 0 such that f extends analytically 

to W + U D(~, r). The set Reg(g) is defined in a similar way. 
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If Reg(f)  = L, we can extend f across L and consider f as an element of O(L). 
According to [6, Chap 1] we set in this case 

(2.8) ( f ,0) .~  = f .~  (~ �9 HF(L)).  

Similarly, if Reg(g) = L we can extend g across L and consider g as an element 

of O(L). In this case set 

(2.9) (O,g).~ = - g . ~  (~ �9 HF(L)).  

In formulae (2.8) and (2.9), the products f .~  and g.~ are defined according to 

formula (2.6). Another way to interpret these formulae consists in using the 

following rules: 

(2.1o) (f ,  0).(u, O) = (fu,  0) 

and 

(2.11) (0, g).(0, v) = (0, -gv ) .  

Now if Reg(f)  = L, f extends analytically to W + U V, where V C UL and we 

have 

(2.12) (f,  o).(0, v) = (0, - f l y -  )(0, v) = (0, f v  w -  ). 

Also, if Reg(g) = L, g extends analytically to W -  U V, where V E b/L, and we 

have 

(2.13) (,~, o).(o, g) = (u, o) . ( -g lv+,  o) = ( - ~ l v + ,  o). 

According to these formulae, we can define the product ~.r  for ~ = ( f l ,g l )  C 

HE(L), r = (f2, g2) C HF(L) in four situations: 

(a) Reg(f l )  = Reg(f2) = L, 

(b) Reg(f l )  = Reg(gl) = L, 

(c) R e d f ~ )  = aeg(g2) = L, 
(d) Reg(gl) = Reg(g2) = L. 

In all these situations we set 

~fl.~b = ( f l f2 ,0)  d- (0,--glg2) -t- (fl,0).(O, g2) zr- (f2,0).(O, gl). 
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Notice that if Reg(f)  = Reg(g) = L, we can consider both f and g as holomorphic 

functions on some V E b/L and we have 

( - f .g Iv+,  O) = (0, f g I v - ) .  

So the product ~. r  is well defined if ~ E HF(L) and r E HF(L) satisfy one of 

the four previous conditions (a), (b), (c), (d). Clearly, we have 

(2.14) T'r = ~OILI'r if L1 C L. 

If L is an open subset of"IF we will denote by I;(L) the set of all non-empty subsets 

of L. Now let ~, r E HF('f) and assume that 

Reg(~ +) U Reg( r  = Reg(r  +) U Reg(~-)  = "lI'. 

Set 

(2.15) )2~,r =];(Reg((p +) M Reg(r  ];(Reg((p +) M Reg((p-)) 

U ])(Reg(r +) VI Reg(~b-)) U "P(Reg(r M Reg((fl-)). 

Then 12~,,r is a covering of T, and for L E 12~,r the product qOL.~L c a n  be defined 

as above. 
Also, it immediately follows from (2.14) that 

(~91L,-elL, )L,AL2 ~--- ~fLIOL2"r = (~IL2"r 

if L1 E )2~,r L2 E 12~,r and L1 M L2 # 0. Since HFT is a sheaf, we can introduce 

the following notion: 

Definition 2.1: Let ~ , r  E HF('II'). We say that ~ and r are multipliable if 

Reg(~ +) U Reg ( r  = Reg(r  +) U Reg(~-)  = T. If ~ and r are multipliable, we 

define the product ~.r  E HF(ll') by the condition ~o.r = ~OlL.r L (L E 12~,,r 

Remark  2.2: (1) Let h E O(~i'), ~ E HF(T) and let h E HF(~I') be the hyperfunc- 

tion having the same Fourier coefficients as h. We have h = (h +, h- ) ,  where h + 

and h -  are defined by (2.2) and (2.3), and so ~" = Reg(h +) = Reg(h-)  E 12~,~. 

Let r E (0, 1) such that h E 7-/(W,.). Then h + and h -  extend analytically to 

DUW~ and ( C \ D ) U W r ,  and so h + E O(~2),h - E O(T). We have h = h + - h - .  

Using (2.10) and (2.11), we obtain 

h.~ = (h +, 0)40 + (0, h - ) .~  = h+4o - h-40. 
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Hence we have 

(2.16) h.~ -- h.~ (h E O(T), ~ E HF(V)). 

We thus see that  the identification between h and h is compatible with 

computation of products. 

(2) Let ~ E HF(T), and denote by L~ the union of all open subsets L of T such 

that ~IL ---- 0. Set Supp~ -- T \  L~. This notion agrees with the usual notion of 

support if ~ is a distribution, i.e. if there exists p _> 1 such that I~(n)l = O(In[ ~) 
as lnl ~ § Clearly, Supp ~ is the smallest set E such that ~+ and ~ -  extend 

analytically each other across T \  E, and L~ C Reg(~ +) n Reg(~-) .  

Let ~,~b E HF(T) and assume that Supp~ n Suppr  = 0. Then L~ C )2~,r 

and Lr C l;~,~b, so that  ~ and r are multipliable, since L~ U Lr -- "ii'. We 

have ~IL~ = 0, and ~.~blL ~ = 0. Similarly ~.r = 0. We thus see that if 
Supp~ n Supp r = 0 then ~ and ~b are multipliable, and ~.~b = 0. 

For h E (.9(T) set 
p(h) = limsup [h(n)l 1/Inl, 

Inl~+oo 

so that h extends analytically to Wp(h). The space HF(T) can be viewed as the 

dual space of O('iF), see [3, Chap. 1]. This duality is implemented by the formula 

(2.17) (h, {) : ~-~' f (p)~(-p-  1) (h E O(T), { E HF(T)). 
pEZ 

We also have, for f E O(7I'), ~ E Hf(ll'), p(h) < r < 1 < R < p(h) -1, 

1 
(2.18) (h' ~l = ~z~ [~v h(~)~+ (~)d~ - /Rv h(~)~- (~)d~] " 

The difficulty with products of hyperfunctions consists in computing products 

of the form (/,  0).(0, g) where f E 7/(D), g E 7 / o ( C \  D). The following Iemma 

gives an explicit way to do this: 

LEMMA 2.3: Let f E 7-/(D), g E 7-/o(C\ ~) and assume that Reg(f) U Reg(9) = 

T. Let LI C Reg(f) and Lg C Reg(g) be two open sets such that L / U  L a = ~', 

and let V/ E l~ny and Vg E l~L 9 be two simply connected open sets such that f 
extends analytically to D U V/ and g extends analytically to (C \ D) W V 9. Then 
for every h E O(T) we have 

(h, (f, 0).(0, g)) - 2 i ~ r  f(~)g(~)h(~)d~, 
h 
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L A 

Wp(h) and containing the origin in its interior. 

Proof." Set U -- V/-- U V + U (L I M ig). Then U is open and U �9 Llisniq. Let 

�9 HF(II') be defined by the formula 

(2.19) (h,~) - 2i~ f(~)g(~)h(~)d(, 
h 

where Fh is any piecewise-C 1 Jordan curve contained in U and containing the 

origin in its interior. 

It  follows from Cauchy's theorem that  this definition does not depend on the 

choice of Fh. Let z �9 C \ T and set 

- 

Then hz E O(~i') and we have 

for ~ �9 T. 

1 /f~ f(~)g(~)d~ 1), ( 2 . 2 0 )  = = ( I z l  < 

where Fz C U is any piecewise-C 1 Jordan curve such that  z C Int Fz. 

Similarly we have 

1 ]~ f(~)g(~)d~ (lzl > 1), (2.21) ~ - ( z )  = (hz,~) = ~ z z - ~  

where Gz C U is any piecewise-C 1 Jordan curve such that  z is exterior to Gz. 
Using formulae (2.20) and (2.21) we extend analytically ~o + to ]I} U V S and ~ -  to 

•U yg. 
Let z E V/- and let Fz be as above. Let Uz be the component of V/- containing 

z. Then Fz Cl Uz 7 ~ 0, for, otherwise, C \ ( ] I )U V/-) would be contained in Int Fz. 

Select a closed arc F1 C F~AUz and let F2 be a piecewise-C 1 path in U~ such that  

Ft O P2'is a Jordan curve containing z in its interior. Then (Fz \ F1) U F2 -- Gz 
is a piecewise-C 1 Jordan curve contained in U satisfying the condition of (2.21). 

Hence 

1 fr  f(~)g(~)d~ v + ( z ) -  = 

By Cauchy's formula, we obtain 

(2.22) ~o+(z) = ~ - ( z )  - f(z)g(z) (z �9 VT). 
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By a similar argument, we also obtain 

(2.23) ~+(z) = ~-(z)  - f(z)g(z) (z �9 V+). 

Since ~+ �9 7~(Vf U D), it follows from (2.22) that 

qalL, -~ ( q~ qO~V]- + f glvf ) = (0, f glvj- ) = ( f '  0)IL,'(0' g)iL, , 

by (2.12). 

Since qo- �9 7/((C \ D) U Vg), it follows from (2.23) that  

qVlL 9 = (~W + - f g i v + , ~  -) = (-fgly+,O) = (f,O)lL .(O,g)lLg, 

by (2.13). Since L / U  Lg = T, this shows that ~ = (f, 0).(0, g). II 

Remark 2.4: It is possible to give an explicit construction of open sets 

VI, V~, L f ,  Lg and of curves Fh satisfying the conditions of Lemma 2.3. Of course, 

if Reg(f)  = 0 we can take VI = 0, Vg -- Wp, where p = p(h) and Fh = rT, where 

p < r < 1. Also, if Reg(g) = O we can take Vf = Wp, where p = p(h), Vg = ~, 

and Fh = RqF where 1 < R < p-1. 

Now assume that  Reg(f)  r 0, Reg(g) r 0, and that Reg(f)UReg(g) = T. Since 

T \ Reg(g) is a compact subset of Reg(f)  there exists a finite family F1, F2, �9 �9 Fk 

of open arcs, with Fjj C Reg(f)  for j < k, such that T \ Reg(g) C [.Jj_<k Fj. 

Taking Fix LJFj2 instead of Fjl and Fj2 whenever Fjl fqFj2 • 0 we can arrange that  

F 1 , . . . ,  Fk be pairwise disjoint, and taking smaller arcs whenever Fj, A Fj2 r 0 
we can in fact arrange that  F1,'  .-,  Fk be pairwise disjoint. Of course, we can 

assume that  none of the arcs F 1 , . . . ,  Fk is contained in Reg(g). 

Denote by aj =- e is3 and by bj  = e it~ the endpoints of Fj. By using a suitable 

renumbering of the family (Fj)j<k we can arrange that  Sl < tl . . .  < sk < t k  "( 

Sl + 27r. Set Gj fe is1 for j < k - 1, Gk = {eis}tk<s<s 1 For j < k ~- 1 J'tj < s < s j + l  - -  " - -  

choose an open arc Hj containing aj and an open arc Kj containing bj such that 

Hj U Kj C Reg(f)  N Reg(g), so that  H 1 , . . . ,  Hk, K 1 , . . . ,  Kk are pairwise disjoint. 

Set 

LI'= U ( F j U H j U K j ) ,  La= U ( G j U H j U K j ) .  
j<_k j<_k 

Then n f  tJ L 9 --- T, L--~ C Reg(f) ,  L-g C Reg(g). 

If L is an open subset of T, set VL,r = {z �9 CIr < Izl < r - l , z / N  �9 L} for 

r �9 (0, 1). Since Lf  C Reg(f) ,  a standard compactness argument shows that  

there exists r l  �9 (0, 1) such that f extends analytically to ]I) tJ VL~,r~. Similarly, 
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we see that there exists r2 �9 (0, 1) such that g extends analytically to (C \ If)) U 

VL~,~2. Set 5 = sup(rl,r2) and, for r �9 (5, 1), denote by F~ the Jordan curve 

Uj<_k(rG--ju r - l -~ ju  [raj,r-laj] u [rbj,r-lbj]). Now let h �9 O(T) and let r be 

such that sup(p(h), 5) < r < 1. Then the Jordan curve F~ satisfies the conditions 

of Lemma 2.3 with respect to h. 

Notice that if Supp ~MSupp r = 0 we can use the same contours F~ to compute 

(h, (~+, 0).(0, r  and (h, (~b +, 0).(0, ~- ) )  for h �9 C0(V). 

THEOREM 2.5: Let ~a, r �9 HF(~I'). I f ~  and r are multipliable, then 

~.~-r = lim ~-~rlp l~(p)r  (n �9 Z). 
r--+l - 

pEZ 

If, further, limp~+oo ~(p)~b(n - p) + ~ ( -p ) r  + p) = O, then 

Proof." 

~a.~-r = lim ~ - ~ ( p ) ~ ( n - p ) .  
m--+-{-oo 

IPi<_m 

Set en(~) = ~ - n - t  for n �9 Z. It follows from (2.17) that  we have 

(2.24) (e~, ~) = ~(n) (n e Z, ~ �9 HF(T)). 

Now for ~ �9 HF(T), A �9 ~* := ~ \ { 0 } ,  define ~ �9 HF(T) by the formula 

(2.25) ~'~(n) = Aisle(n), 

so that  ~a~ �9 O(~I') for A �9 ]1)*. We have, for ~ E HF(~), r �9 HF(~I'), 

(2 .26)  = • D* U D *  • 
pCZ 

A 

and so the map (,~,#) ~ ~ . r  is analytic on D* • ]I)* for every n �9 Z. 

Now let ~, r �9 HF(T) and assume that ~ and r are multipliable. If L is an 

open subset of ll" set again VL,~ = {z e Cir < Iz] < r - l , z / I  z] �9 L} for r �9 (0, 1). 

Also, for e > 0 set 

L r  {~ �9 inf IArgz -ArgO[  < e}. 
zEL 

It follows from Remark 2.4 that there exists two positive numbers e and 5 and four 

open subsets L~+, Lr  Lr L~- of ~" which possess the following properties: 

(i) L~0+MLr = L ~ + M L ~ -  = 0 ,  L ~ + U L r  =Lr  = T .  
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(ii) ~o + extends analytically to D U VL~+,a and r  extends analytically to 

(c \ ~) u v%_,,~. 

(iii) ~b + extends analytically to ]D U VL~r 6 and qg- extends analytically to 

(c  \ ~) u v%_,,,~. 
Set r = v/5 and for 5 < p < r, 0 < ~1 < e, 0 = ~+,g~-,~b+,r - set Vo,v,p = VL~.p. 
Set 

FI,~=r-lZ~+UrLr U s[L~'+nLw-]) 
r < s < r - ~  

and 

Also set 

and 

r~,"=r-lL-"/'+UrL~-U( U ~[Lr 
r < s < r - 1  

Ul,r/p = V++ jl,p U E-, 'q,p U ( ~p+ 

u 2 , ~ = v  + - (r;+ n r ; _ ) .  , , r U V~_  m,p U 

Then Fl,r and F2,r are Jordan curves respectively contained in Ul,n,, and U2,o,p 
for 6_< p <  r, 0 < ~ < e. 

Now s e t ~ = { z E C I 0 < l z l < r  -1 , [Argz  I < e } .  F i x n E Z .  F o r A E f l ,  t tE  

set 

(2.27) 1 f qo+(A~).r 

+ ~ f_, ~-(A-a~)'r 

2i7r ~~162 
1,r  

2i7r r  (#~) 4~ (A-a~)e~ (~)d~" 
2 , r  

For A E C\{O},  set f~(~) = f(A~) for f E 7-/(D), ga(~) - g(A-x~) for g E 

7-/o(C\ D), so that fA is analytic for I~I < ]A1-1 and 9A is analytic for I~I > IAI �9 
Let A E gt and set p = IA1-1, ~/= e - t Arg A I. Then ~o + extends analytically to 

p[]I)* UV+,m~] , r  extends analytically to p[D* UVc++,m~], ~o; extends analytically 
to p-1 [(C \ ~) U V-,~,~], and r  extends analytically to p-1 [(C \ D) U Vr ,~,~]. 

If p > 1, then p[l) U V~++,~,~] M p - a [ ( C \  D) U Vc-_,m~] contains Vl,mF'.~, and 

fl[D U Y:+,o,6 ] n p - l [ ( C \  D) U V-,o,6] contains U2,~? ,p - l . 5  , and Fj,r C Uj,o,p-,.~, 
j = 1,2, since p-1.5 < r. Also r'll' C pD* and r - i T  C p - l ( C \  D). 
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If p < 1, then p[]~* U V$+m,a] C D* U V + p[D* U V~-+m,a ) C If)* U V + 
- -  ~ , + , ~ , 6 '  r  

[ (c  \ u c ( c  \ u [ (c  \ u c ( c  \ u 

__Vc--,~,a" This shows that Fn is well-defined and analytic on ~t x f~. 

Since L~+,~ U Lr ~.Lr U L~-,~ = 3  ̀for 0 < ~ _< e, it follows from Lemma 

2.3 that  Fn(A, It) = ~A.~b,(n) for A E ~t n D, It E ~ n]I). In particular we see 
that ~p6zAIpl.Itln-pl.~(p).Cb(n- p) = ~x.r to ~.r  as (A, It) 

converges to (1, 1) in (D* x ]I)*) U (]I)* x D*). 

Now set bo = ~(0).~(n), bp = ~(p).r - p) + ~(-p) .~(n  + p) for p > 1, 

so that  

bpA p = ~ . c ( n ) =  Fn(A,1) for lA[< 1. 
p=0 

Since Fn is analytic on f~ x ~, we see that 
+oe 

lim ~ bprPe 'pt =-- F n ( e  i t ,  1), 
t - + l -  

p=0 

uniformly for [tl <_ e/2. Recall the following Fatou Riesz theorem [12, Vol. 1, 

Chap. 17, p. 404]: If e it E RegO, where O(A) = z..,p=0X-'+~176 ~v-' " xp for IAI < 1, and if 

limp__++o~ ap = 0, then x- '+~, ,  oipt is convergent. But e i t  is a regular point for Z.~p=0 ~P~ 
+c~ 

the series ~p=0 bp Ap for Itl <_ e/2, and if 

lim bp = lim ~(p).~(n - p) + ~ ( -p ) . r  + p) = 0, 
p ~ + ~  p--~+oo 

+co 
this shows that  the series Y~v=0 bv is convergent, and we have 

+oo 

~ . l " ~ ( n ) = F n ( 1 , 1 ) = ~ b p =  lim ~ ~ ( p ) r  I 
rn --e q- oo 

p=0 Ip[<m 

Remark 2.6: Using the same method it is easy to show that if h E 0(3") then 

the map (A, It) , ) (~.r  h) extends analytically to (II)* U pf~) x (II3" U pf~) 

for some p > 1 depending on h. Also, if we equip HF(3") with the Frechet- 

Schwartz topology of uniform convergence on bounded subsets of (9(3") then the 

map (A, It), > ~x.r has a continuous extension to [(II)* u(an3")l • [D* u(amv)] .  

Using Remark 2.2 and Theorem 2.5, we obtain 

COaOLLARY 2.7: Let ~o, r 6 HF(3"). I fSupp~  N Suppr  = 0, then 

lim ~-~ rlPl~(p).~b(n - p) = 0 (n 6 Z). 
r - ~ l -  

p6Z 

If, further, limp-,+~ ~o(p).~(n - p) + ~(-p) .~(n  + p) = O, then 

lim ~-~ ~(p).~b(n- p) = O. 
m--+-I-oo 

Ipl_<m 
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