ISRAEL JOURNAL OF MATHEMATICS 116 (2000), 271-283

PRODUCT OF HYPERFUNCTIONS ON THE CIRCLE

BY

J. ESTERLE AND R. GaAy

Laboratoire de Mathématiques Pures, UPRESA 5467, Université Bordeauz 1
851, cours de la libération, 33405-Talence, France
e-mail: esterle@math.u-bordeauz.fr  gayr@math.u-bordeauz. fr

ABSTRACT
Let ¢ and ¢ be two hyperfunctions on the circle which have disjoint
support. We interpret in terms of Fourier coefficients the fact that their
product, defined in the sense of sheaf theory, vanishes.

1. Introduction

Let HF(T) be the set of all hyperfunctions on the unit circle T. These objects
can be interpreted as linear functionals on the space O(T) of germs of analytic
functions on T [3, Chap. 1], or as analytic functions on C~ T vanishing at infinity
(see section 2}, and are natural generalizations of Schwartz distributions on T. Of
course, it is not possible in general to define the product of two hyperfunctions,
but this product makes sense for ¢ € HF(T},+ € HF(T) if it is possible to com-
pute in some sense the convolution (ﬁ*{p\ and if the sequence ((@*z;f;\) {n))nez is the
sequence of Fourier coefficients of some hyperfunction, which will be called the
product of ¢ and . This is the case, for example, if ¢ is the hyperfunction asso-
ciated to some function analytic on a neighborhood of the unit circle. We point
out in this paper a natural result (corollary 2.7): if ¢ and v are hyperfunctions
on T with disjoint support then

lim Y rPG(p)p(n - p) = 0.

o~

If, further, limp|— 400 @(p)®(n — p) = 0, then

im @(p)¥(n—p) =0.
[pl<m
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This result was suggested to the first author by an elegant argument based on
the Poisson summation formula and the Paley-Wiener theorem, at the end of
a recent paper by Domar (7] where nontrivial invariant subspaces of ¢2(Z) are
constructed for weights w such that w(n)w(—n) =1, {n € Z} but for which

$° llogetol _

provided that Y ., |logw(n + 1) + logw(n — 1) — 2logw(n)] < +oo.
Atzmon [2] noticed that Domar’s argument shows in fact that if ¢, € HF(T), if
ZpEZ |$(p)|}{b\(n —p)| < +oo(n € Z) and if Supp ¢ and Supp ¥ lie in disjoint arcs
of the unit circle, then ¢.¢p = 0, and used this fact and the Beurling-Malliavin
theorem [4] to replace the condition w(n)w(—n) = 1 by the condition

Z|logw n)w(—n)| < +oo
in Domar’s theorem (see also [1], {8], [9], [10] and [11] for other recent results
about translation invariant subspaces of £2(Z)). Our original proof of Corollary
2.7 was based on standard results about entire functions of exponential type and
their Borel and G-transforms (5}, but something looked unnatural, and the au-
thors had the feeling that it was possible to see directly that the product @.7
vanishes in some trivial sense if Supp ¢ N Supp ¥ = @, and then draw conclusions
about Fourier coefficients. We found the explanation in the prehistory of mi-
crolocal calculus [6]. Hyperfunctions on the circle form a sheaf, and it is possible
to define “locally” the product of a hyperfunction and an analytic function. Now
let ¢,1 € HF(T) and assume that the regular points of ¢, 9", ¢~ , 9~ satisfy
Reg(pt) U Reg(¥™) = T,Reg(¢y*) UReg(ew™) = T. Then the product 9.4 can
be defined locally everywhere, hence globally since hyperfunctions on the circle
form a sheaf (Definition 2.1). Now if ¢ and ¢ are multipliable in this sense, and
if we define @, and ¥ for A € D* = D~{0} by the formulae x(n) = A"IG(n),
{p}(n) = A'"'z?)\(n) then, if h € O(T), the map (A, u) — (©r.¥y, k) has an ana-
lytic extension to (D* U Q) x (D* U ) where  is some domain in C containing
the complex number 1 (see Remark 2.6). It easily follows from this observation
that
= hm Zr“"(p (n—p).
peL
Also it follows from the Fatou-Riesz theorem that

pp(n) = lim > @)

<)

(n—p)
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if limy 400 @(p)zZ(n —-p)+ (ﬁ(~—p){/)\(n + p) = 0. The authors believe that this
approach gives the heuristics of the phenomenon pointed out by Domar in (7).

Also, our proofs are based on the use of concrete contour integrals (see Lemma,
2.3 and formula (2.27)) which gives some hope to obtain results analogous to
Corollary 2.9 with weaker notions of support.

The authors wish to thank A. Atzmon for fruitful exchange of information.
We also wish to thank N. Nikolski for suggesting that we consider
im, - ez rlplg'é(p){/;(n — p) to give a sense to the convolution product @ b,
and T. Ransford for suggesting that we use the Fatou-Riesz theorem.

2. Multipliable hyperfunctions on the circle

We will denote by H (W) the space of holomorphic functions on an open subset
W of C. We will say that an open subset W of C is admissible if WN T # 0.
If W is admissible, we set W+ =W nND, W~ =W N (C~ D).

Let L be a nonempty open subset of T, and denote by Uy the set of all
admissible open subsets W of C such that W N'T = L. For W € Uj, denote
by HFw (L) the quotient space H(W ~ L}/H(W). If W1 C W,, the classical
excision theorem shows that the map f + H(W3) — fiw, <1 + H(W1) is an
isomorphism from HFyw,(L) onto HFw,(L). Hence we can consider that the
space HF(L) := HF /(L) does not depend on the choice of W € Uy,.

IfW € U, and if f € H(WT), g € H(W™) are given, we will denote by
(f,g) € HF(L) the coset F + H(W) where Fiy+ = f, Flw- = g. f L1 C L,
then Wy = Ly U(W N L) € Uz, In this case we will define the restriction map
HF(L) — HF{L;1) by the formula

@) (9 = s ows) (W €U, J € HWH),g € HW ™).
Equipped with the restriction maps, the family HFy = {HF(L)} forms as well-
known a sheaf. Notice also that it immediately follows from the excision theorem
that the sheaf HFy is a flabby sheaf, which means that HF(T),, = HF(L) for
every nonempty open subset of T. Details about these standard facts can be
found in [6, Chap. 1].

Set Ho(C\D) = {g € H(C~D)|limp,+009(z) = 0}. Given ¢ € HF(T),
there exists a unique ™ € H(D) and a unique ¢~ € H,(C D) such that ¢ =
(p*,¢7). This trivial special case of the excision theorem follows immediately
from the fact that holomorphic functions in an annulus admit a Laurent series
expansion. We define the Fourier coefficients of ¢ € HF(T) by the formulae

(2.2) et =)_amAr (N <1)

n=0
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and

(2.3) TN ==Y @mAt (1A >1).

n<0

Let L be an open subset of T, and denote by O(L) the set of real analytic functions
on L, i.e. the set | Jy e, H(W)L. For h € O(L), denote by Vj, the set of open
subsets W € Uy, such that h extends holomorphically to W. Let h € O(L) and
let W € V4. Set

(2.4) h.(f.9) = (hf hg) (F€HWT), ge H(WT)).

Formula (2.4) defines the product h.¢ for h € O(L), ¢ € HF(L).

Now let h € O(T), and let ¢ = (¢*, ) € HF(T). Denote by Tz(n) the nth
Fourier coefficient of h. Then h € H(W,) for some r € (0,1) where H(W,.) =
{z € C|r <|z| <77}, and we have

and so
(2.6) ho(n) =Y hp)@n-p) (ne2)
pEZ

Notice that the series above is absolutely convergent.
Consider again h € O(L), W € V4. Define h € HF(L) by the formula

(2.7) k= (hyw+,0) = (0, —hjw-).

If h € O(T), an immediate verification shows that the hyperfunction h and the
function h € O(T) C L*(T) have the same Fourier coefficients.

In the sequel we will often identify a function h € O(L) with the hyperfunction
h € HF(L). Notice that if h € H(W,) C O(T) for some r € (0,1), then h =
(h*,h™) whereas h(z) = h*(z) — h™(z) for 2 € W,.. Hence the hyperfunction
associated to h represents the “jump” between ht and A~ on the circle. Similarly,
fW € U, f e HWT), g € H(W™) then the hyperfunction (f,g) can be
interpreted heuristically as the “jump” between f and g on L.

With the above notations denote by Reg(f) the set of elements £ of L which are
regular for f; this means that there exists 7 > 0 such that f extends analytically
to W+ U D(&,r). The set Reg(g) is defined in a similar way.
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If Reg(f) = L, we can extend f across L and consider f as an element of O(L).
According to [6, Chap 1] we set in this case

(2.8) (f,0).p=fp (p€HF(L)).

Similarly, if Reg(g) = L we can extend g across L and consider g as an element
of O(L). In this case set

(2.9) 0,9)0=—gv (pe€HF(L)).

In formulae (2.8) and (2.9), the products f.¢ and g.¢ are defined according to
formula (2.6). Another way to interpret these formulae consists in using the
following rules:

(2.10) (£,0).(u,0) = (fu,0)
and
(2.11) (0,9).(0,v) = (0, ~gv).

Now if Reg(f) = L, f extends analytically to W+ UV, where V € U, and we
have

(2.12) (£,0).(0,v) = (0, = fjv-)(0,v) = (0, fvjv-).

Also, if Reg(g) = L, g extends analytically to W~ UV, where V € U, and we
have

(2.13) (u,0).(0,9) = (4,0).(=gjv+,0) = (~ugv+,0).

According to these formulae, we can define the product .y for ¢ = (f1,91) €
HF(L),v¥ = (f2,92) € HF(L) in four situations:

(a) Reg(f1) =Reg(f2) = L,

(b) Reg(f1) = Reg(g1) =L,

(c) Reg(f2) = Reg(ge) =L,

(d) Reg(g1) = Reg(gz) = L.
In all these situations we set

e = (f1f2,0) + (0, —g192) + (f1,0).(0, 92) + (f2,0).(0, g1).
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Notice that if Reg(f) = Reg(g) = L, we can consider both f and g as holomorphic
functions on some V € U, and we have

(—f-g|V+ ’ O) = (07 fgIV‘)'

So the product @.1) is well defined if ¢ € HF(L) and ¢ € HF(L) satisfy one of
the four previous conditions (a), (b), (c), (d). Clearly, we have

(2.14) (p.'l/J|Ll = 90|L1-w|L1 if Ly C L.

If L is an open subset of T we will denote by V(L) the set of all non-empty subsets
of L. Now let o, € HF(T) and assume that

Reg(¢*) UReg(yy™) = Reg(4*) UReg(p™) = T.

Set

(2.15) Ve =V(Reg(¢™) NReg(y™)) UV(Reg(e) NReg(v 7))
U V(Reg(¥") NReg(y ™)) UV(Reg(1h~) NReg(p™)).

Then V,,  is a covering of T, and for L € V,,  the product @11 can be defined
as above.
Also, it immediately follows from (2.14) that

(1L, WLy ) LNy = OLynLe PiLinL, = (O1Le-PiLe N LinLa

if Ly € V49, L2 € V,p and L1 N Ly # 0. Since HF7 is a sheaf, we can introduce
the following notion:

Definition 2.1: Let ¢,1 € HF(T). We say that ¢ and ¢ are multipliable if
Reg(pt) UReg(v~) = Reg(v") UReg(p~) = T. If  and ¢ are multipliable, we
define the product ¢.9p € HF(T) by the condition p.¢h;, = g %)L (L € Vi y)-

Remark 2.2: (1) Let h € O(T), ¢ € HF(T) and let h € HF(T) be the hyperfunc-
tion having the same Fourier coefficients as h. We have h = (h*, h™), where h*
and h~ are defined by (2.2) and (2.3), and so T = Reg(h*) = Reg(h™) € Vi o
Let 7 € (0,1) such that h € H(W,). Then h* and h~ extend analytically to
DUW, and (C~D)UW,, and so h* € O(T),h~ € O(T). We have h = h* —h".
Using (2.10) and (2.11), we obtain

hap = (BF,0).0 + (0,h7)p = ht .o — ™.
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Hence we have
(2.16) hp=hg (heO(T),peHF(T)).

We thus see that the identification between h and h is compatible with
computation of products.

(2) Let ¢ € HF(T), and denote by L, the union of all open subsets L of T such
that ¢, = 0. Set Suppy = T™ L,. This notion agrees with the usual notion of
support if ¢ is a distribution, i.e. if there exists p > 1 such that |@(n)| = O(|n|P)
as |n| — +o0. Clearly, Supp ¢ is the smallest set E such that ¢ and ¢~ extend
analytically each other across T E, and L, C Reg({¢™) NReg(¢™).

Let ¢, € HF(T) and assume that Suppy N Suppty = @. Then L, C V, 4
and Ly C V, 4, so that ¢ and v are multipliable, since L, U Ly = T. We
have ¢, = 0, and .4, = 0. Similarly ¢.4r,, = 0. We thus see that if
Suppy N Supp ¥ = B then ¢ and 9 are multipliable, and ¢.¢) = 0.

For h € O(T) set

p(h) = limsup [(n)|'/V",
|n|—+o0
so that h extends analytically to W, The space HF(T) can be viewed as the
dual space of O(T), see [3, Chap. 1]. This duality is implemented by the formula

(2.17) =3 "hP)@(-p—1) (hc O(T),p € HF(T)).
PEZL

We also have, for f € O(T), ¢ € HF(T), p(h) <r <1< R < p(h)71,

1

(2.18) (h, o) = 5—

[ e [ noe e

rT RT

The difficulty with products of hyperfunctions consists in computing products
of the form (f,0).(0,g) where f € H(D), g € Ho(C~ D). The following lemma
gives an explicit way to do this:

LEMMA 2.3: Let f € H(D), g € Ho(C~ D) and assume that Reg(f) U Reg(g) =
T. Let Ly C Reg(f) and L, C Reg(g) be two open sets such that Ly U Ly =T,
and let Vy € Uy, and Vy € Uy, be two simply connected open sets such that f
extends analytically to DU V; and g extends analytically to (C~D)UV,. Then
for every h € O(T) we have

(h, (£,0)-0,9)) = ~5- / FE)9©h(E)dE,
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where Ty, is any piecewise-C! Jordan curve contained in [Vf_ Uvtu(Lyn Lg)] N
W,(n) and containing the origin in its interior.

Proof: Set U = ViU Vg+ U(LyN Lg). Then U is open and U € Uy nr,. Let
¢ € HF(T) be defined by the formula

(2.19) (hyg) = / F(©)9(€)h(E)de,

where ', is any piecewise-C! Jordan curve contained in U and containing the
origin in its interior.

It follows from Cauchy’s theorem that this definition does not depend on the
choice of T',. Let z € C\ T and set

h, (&) = E—_l_—z for £ € T.

Then h, € O(T) and we have

(220) o) = (o) = i [ a2 <),

where F, C U is any piecewise-C! Jordan curve such that z € Int F,.
Similarly we have

e2) @ =t =5 [ L2%8a (a5,

pi%is

where G, C U is any piecewise-C! Jordan curve such that z is exterior to G,.
Using formulae (2.20) and (2.21) we extend analytically ¢* to DUV and ¢~ to
DUV,

Let 2z € Vf_ and let F, be as above. Let U, be the component of Vf_ containing
z. Then F, NU, # 0, for, otherwise, C~(DU Vf‘) would be contained in Int F,.
Select a closed arc I'; C F,NU, and let T’ be a piecewise-C' path in U, such that
['; N1y is a Jordan curve containing 2 in its interior. Then (F,~T1)UT; =G,
is a piecewise-C! Jordan curve contained in U satisfying the condition of (2.21).

1 f(€)g(©)

2 r'yuls z — £

Hence

¢t (2) 97 (2) = de.

By Cauchy’s formula, we obtain

(2.22) oH(z) = ¢ (2) - [(2)g(z) (2 € V)
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By a similar argument, we also obtain

(2.23) ¢t (2) =07 (2) = f2)9(x) (z€V,F).

Since ¢t € H(V; UD), it follows from (2.22) that
PlLy = (‘10+v(pl+‘~/f— + fglvf‘) = (Ov fglvf“) = (f) 0)\Lf'(0) g)]Lf,

by (2.12).
Since ¢~ € H((C~ D) UV,), it follows from (2.23) that

<p|Lg = (('0|_Vg+ - fg|vg+1(p_) = (_fg|Vg+,0) = (.fa 0)|Lg'(0ag)|Lga

by (2.13). Since Ly U Ly = T, this shows that ¢ = (f,0).(0, g). ]

Remark 2.4: It is possible to give an explicit construction of open sets
V¢, Vg, L, Ly and of curves I'y, satisfying the conditions of Lemma 2.3. Of course,
if Reg(f) = 0 we can take Vy = 0,V, = W,, where p = p(h) and I', = rT, where
p < r < 1. Also, if Reg(g) = @ we can take Vy = W,, where p = p(h),V, = 0,
and 'y, = RT where 1 < R < p~%.

Now assume that Reg(f) # 0, Reg(g) # 0, and that Reg(f)UReg(g) = T. Since
T Reg(g) is a compact subset of Reg(f) there exists a finite family Fi, Fa, ..., Fg
of open arcs, with F; C Reg(f) for j < k, such that T~ Reg(g) C Uj<x Fi-
Taking F;, UFj, instead of Fj, and F;, whenever Fj, NF;, # § we can arrange that
Fi, ..., Fy be pairwise disjoint, and taking smaller arcs whenever Fj, N Fj, # 0
we can in fact arrange that Fy,---,Fy be pairwise disjoint. Of course, we can
assume that none of the arcs Fy,..., Fy is contained in Reg(g).

Denote by a; = €**s and by b; = e'’s the endpoints of F;. By using a suitable
renumbering of the family (F}) <k we can arrange that s; < 1.+ < s <t <
s1+2m. Set Gj = {€"}y, cocs;yy for j <k —1,Gy = {€}t,<o<sy- Forj <k
choose an open arc H; containing a; and an open arc K; containing b; such that
H,;UK; C Reg(f)NReg(g), so that Hy,...,Hi,Kq,..., Ky are pairwise disjoint.
Set

Ly=J(FUH;UK;), Ly=J(G;UH;UK)).
<k J<k
Then L; U L, =T, L; C Reg(f), Ly C Reg(g).

If L is an open subset of T, set Vi, = {z € C|r < |z| < r~1,z/|2| € L} for
r € (0,1). Since L; C Reg(f), a standard compactness argument shows that
there exists r; € (0,1) such that f extends analytically to DUV, .. Similarly,
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we see that there exists rp € (0,1) such that g extends analytically to (C~ D) U
Vig.ra- Set & = sup(r1,73) and, for r € (4,1), denote by I', the Jordan curve
U<k (rG; Ur="F; U lra;, 7~ a;] U [rbs, 7='b;]). Now let h € O(T) and let r be
such that sup(p(h),8) < r < 1. Then the Jordan curve I, satisfies the conditions
of Lemma 2.3 with respect to h.

Notice that if Supp ¢NSupp 1y = @ we can use the same contours I, to compute

(h, (¢7,0).(0,%7)) and (h, (¢,0).(0,¢7)) for h € O(T).
THEOREM 2.5: Let ¢, € HF(T). If ¢ and v are multipliable, then

pab(n) = lm Y rPG(E)i(n—p) (ne2).

p€Z

o~

If, further, limy—, 40 B(p)$(n — p) + G(—p)th(n + p) = 0, then

(n - p).

S
=
G
i
=
Py
3
<)

Proof: Set e,(¢) = ¢! for n € Z. It follows from {2.17) that we have
(2.24) {en,p) = P(n) (n€Z,p € HF(T)).

Now for ¢ € HF(T), A € D" := D {0}, define @y € HF(T) by the formula
(2.25) @a(n) = N"G(n),

so that @y € O(T) for A € D*. We have, for ¢ € HF(T), ¢ € HF(T),

(226) ordp(n) = 3 AL PGR)I(n —p) (A weD xD*UD" x D),
pEZ

and so the map (A, u) — m(n) is analytic on D* x D* for every n € Z.

Now let ¢,7% € HF(T) and assume that ¢ and v are multipliable. If L is an
open subset of T set again Vi, = {z € Cr < |z| <7}, z/|z| € L} for r € (0,1).
Also, for € > 0 set

Lf={¢eT| ig£|Argz—Arg§| < e}

It follows from Remark 2.4 that there exists two positive numbers € and é§ and four
open subsets L+, Ly, Ly+,L,- of T which possess the following properties:
(i) L+ NLy- =Ly+ NLy,- =0, Ly+ULy- =Ly+ UL,- =T.
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(i) ¢t extends analytically to D U VL;+,5 and 9~ extends analytically to
(C~D)U Vie -
(ili) ¥* extends analytically to D U VL;“(; and ¢~ extends analytically to
({CND)uVie .
Set 7 = /6 and fo: 5’3 p<r,0<n<e 0=y o, 9T, ¢ set Vo, = VLZ,p‘
Set
Ty, =1L UrLymU( |J slLornIyo))

r<s<r-t
and
Tor=rLyr UrL-U( | s[Ly+ nI,0).
r<s<r-1
Also set
Une = V«;,n,p UVym eV Lge NLY)
and

-yt - n n
Uz = Vi , UV ULy N L)

Then I'y» and Iy, are Jordan curves respectively contained in Uy, , and Us 5 ,
for6<p<r0<n<e

Now set Q = {z € C|0 < |z| < 77 !,|Argz| < €}. Fixn€ Z. For A€ Q,peN
set

(2.27) FaOvm) = [ o7 () 4 (u€)en(€)de

2w T
1 S PN |
+ g [ o OO W a0
1 + — -1
2ir Jr, ¥ (A6)-¥™ (1™ E)en(£)dE
1 + —(y-1
_— (A 2 (E)dE.
27 ), P ().~ (AT E)en(€)dE
For A € C~{0}, set fr(§) = f(XE) for f € H(D), gr(€) = g(A71¢) for g €
H,(C~ D), so that fy is analytic for |¢| < |[A|~! and gy is analytic for [¢] > |A|.
Let X € Q and set p = |A|™},n = € — | Arg A|. Then ¢} extends analytically to
p|D* UV‘;S, nsh ¥} extends analytically to p[D* UVJ+ n,8b © extends analytically
to p~[(C~D)u V- ,n,é]’ and ¥ extends analytically to p~![(C\D)uU V- ,n,é]'
If p > 1, then p[DU V:Ln,is] Np (C~D)u Vd;_—,n,é] contains Uy, ,-1.4, and
pDU VJ+,n,6] Np H[(CND)U V- ,”’5] contains U, ,, ,-1 5, and T'j» C Uj p -1.5,
j=1,2, since p~1.6 < r. Also rT C pD* and r~T C p~}(C\ D).
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If p < 1, then p[D* U V;:L né] chu V;,n,é, pD* UVS sl C DU VJ+,n,6’
pTH(CND)UV 5l C (C D)u Vo e PCND)UV _nsl C(C~D)U
V¢__, o . This shows that F}, is well-defined and analytic on Q x €.

Since Ly+ nULy- 5 = Ly+ nUL,- , = T for 0 <7 <, it follows from Lemma
2.3 that F,(\, p) = m( Yfor A e QND, p € QND. In partlcular we see
that 3° . Aol yln=rl cp( )ab(n —p) = cp/,\?“(n) converges to <p.1/)( ) as (A, u)
converges to (1,1) in (]D x D*) U (D* x ﬁ*).

Now set b, = $(0).3(n), b, = @(p)-P(n — p) + F(~p)-P(n + p) for p > 1,
so that

3 0 MP = oap(n) = Fu(A,1) for A < L.

p=0
Since F, is analytic on  x Q, we see that
+o0
lim b,rPet?t = F,(e%, 1),
e 1)2:;) p n( ’ )

uniformly for |t| < €/2. Recall the following Fatou-Riesz theorem [12, Vol. 1,
Chap. 17, p. 404]: If €' € Reg®, where O()) = +°° ap/\p for |A\| < 1, and if
limp,_, { oo @p = 0, then Z o ape’P is convergent. But e' is a regular point for
the series Z;’Z by AP for |t| < €/2, and if

lim by = lim_(p)-(n~p)+ P(-p)-b(n+p) =0,

p—rtoo

this shows that the series Z“Lj; b, is convergent, and we have

<)

pP(n) Zb lim e(p)Y(n—p). 1

Remark 2.6: Using the same method it is easy to show that if A € O(T) then
the map (A, p) —> (pr.¥u, h) extends analytically to (D* U pQ) x (D* U p)
for some p > 1 depending on h. Also, if we equip HF(T) with the Frechet-
Schwartz topology of uniform convergence on bounded subsets of O(T) then the
map (A, ) —> @x.¥p has a continuous extension to [(D* U(QNT)] x [D*U(Q2NT)].
Using Remark 2.2 and Theorem 2.5, we obtain

COROLLARY 2.7: Let p,1 € HF(T ) If Supp ¢ N Supp ¥ = 0, then

hm Zr"" P(n—p)=0 (nez).
pEL
If, further, limp_ 400 $(p)3(n — p) + §(~p)-(n + p) = 0, then
Llm ?(p)-d(n—p)=0.
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